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The aim of this presentation is not to give
detailed results on the

transformation of DEVS models into
Timed Automata.

It has rather for object to open research
ways which could introduce the DEVS

formalism into real-time system design



It is proposed to make diffusion in Academic environments, 
to impose the standard in the academia as a way of 
achieving diffusion. 

DEVS Standardization Study group. 

Minutes of the first meeting. 
April 26th. 2001 (ASTC; Seattle, WA).



Prof. Kim 

Decide which is the goal of the std. to be proposed: 
interoperation? Systems analysis? 

Defining a goal is the first step to be carried out.

 Or Modeling during a Design process.

DEVS Standardization group

Meetings in: European Simulation Symposium 
(October 2001, Marseille, France)



DEVS can be used as the core formalism, 
in order to enable proof of correctness.

DEVS Standardization group 

Meeting in Wintersim (December 2001, Arlington, VA)



DEVS can be used as the 
core formalism, in order to 
enable proof of correctness.

Decide which is the goal 
of the std. to be proposed: 

interoperation? 
Systems analysis? 

Defining a goal is the first 
step to be carried out.

It is proposed to make diffusion
in Academic environments, 
to impose the standard in 
the academia as a way of 

achieving diffusion. 

Design approaches 
for real-time

 systems

This Presentation

Links between DEVS 
and Timed Automata

Links between DEVS 
and Timed Automata



Behind this presentation and the transformation 
of DEVS models into timed automata, we try to 
answer to the questions: 

Why, in the field of software engineering, people 
use timed automata (Petri nets) rather than 
DEVS ? 

How (and where) to introduce the use of DEVS 
formalism into software engineering approaches ?

DEVS or TIMED AUTOMATA



DEVS formalism is not framed within the dichotomy 
between syntax and semantics. 

DEVS is not a syntactic formalism 
with a corresponding semantic model, 
it is a symbolic specification of 

system semantics [O’Neill]. 

 A first answer can be :

Why, in the field of software engineering and 
computer sciences, academic people 

use timed automata (or Petri nets or Statecharts)
 rather than DEVS ?



syntax

Operationnal 
semantics

statecharts

Timed Automata
and

Petri nets

DEVS

Explicit states Logical time

continuous 
time



DEVS = clean operational semantics
and clean interpretation

- Only one way to execute the model,

- A clean interpretation of the model elements 
   in the real-world

Are these 2 properties considered as needed 
for high-level specification formalisms by software

engineering community ?



Classical academic approaches are based on
formal verification and not on simulation,

Some other answers can be :

DEVS models are deterministic and 
this can be considered as an inconvenience 

for high level specifications of 
real-time software

Why, in the field of software engineering and 
computer sciences, academic people 

use timed automata (or Petri nets or Statecharts)
 rather than DEVS ?



DEVS well-adapted 
to low-level models 

Analysis models of 
real systems

Timed Autmata
 well-adapted 

to high-level models 

Software
specifications



Why to establish a link 
between DEVS 

and 
Timed Automata

To allow
formal verification

methods to be used 
in the 

DEVS world

To allow
clean and successful 
 simulation methods 

to be used
in the Timed Automata 

world 



Why to establish a link 
between DEVS and Timed Automata

Timed automata can 
be seen as a high level 
specification formalism

DEVS model can be seen
 as a low level specification 
of the system

Prove that the DEVS model
implements correctly the
specification given by the

Timed automaton

Design Methodology



Why to establish a link 
between DEVS and Timed Automata

Timed automata used
 as a high level 
specification

for control systems

DEVS used to represent
the systems to be 

controlled

Verify the behavior of the coupled model

Design Methodology



TIMED AUTOMATON

T.A introduced in the 90 for high level 
formal specifications
 of real-time systems

A variety of formal methods have been 
developed to prove that a T.A. satisfies basic 

correctness properties 
and timing properties 

which guarantee the performance 
of the real systems.



Model checking was one of the most successful 
verification technique. 

An analysis is done to explore the reachable state space.
Tools are typically unable to analyze models with a large
number of states

The notions of safety and liveness properties have 
been introduced to express that:

-‘something (bad) will not happen during 
an execution: safety property,
-eventually ‘something (good) will happen 
during an execution: liveness property



Some works in verification of real-time systems 
 are based on the use of something called ‘simulation’ 
 
A simulation proof involves establishing a correspondence
between the states of two models M1 and M2, one of 
these models is regarded as an implementation and 
the other as a specification. 
The correspondence between these two models is called 
a simulation relationship. 
The existence of a simulation relationship is used to show 
that any behavior that can be exhibited by M1 can also 
be exhibited by M2 
Typically, the model M1 contains more details than the 
specification M2.

Simulation Relationship



Classical timed automata (TA)  are, non-deterministic 
finite discrete state automata extended with a finite 
number of real-valued clocks. 

A TA alternates between two modes of execution, 
letting time pass continuously, then taking a step 
changing its discrete state. 

A classical timed automaton is seen as a generator 
(or an acceptor), it has only output (input) actions 
or events associated with state transitions.

TIMED AUTOMATA



The states of the automaton are called vertices (location)
 and the transitions (arcs, edges) are called switches.

Switches (edges) are instantaneous.

Time can elapse in locations.

A clock can be reset to zero simultaneously with any switch.

The reading of a clock equals the time elapsed since the last
time it was reset (time is global)

Recall: TIMED AUTOMATA
basic definitions from the literature



With each switch one may associate a clock constraint, and
require that the switch may occur only if the current values of

the clocks satisfy this constraint.

With each location we associate a clock constraint called its 
invariant,

and require that time can elapse in a location only as
long as its invariant stays true.

S0
S1

x<=2

A, x:=0

x>=1, B

TIMED AUTOMATA



Timed Automata

X<=5 AND Y>3

n

m

a
X:=0

Reset
Action performed on clocks

GUARD
Boolean combination of comparisons with
integer bounds

Action
used for synchronization

A STATE of the Automaton is defined by:
(location, X, Y)

called total state in the DEVS formalism



Timed Automata

n

m

a
X:=0

X<=5 AND Y>3

Transitions 

Transition due to a location switch (discrete):

(n, x = 2.4, y = 3.31) a (m, x = 0, y = 3.31)

Transition due to time elapse (continuous):

(n, x = 2.4, y = 3.31) (n, x = 3.5, y = 4.41)e(1.1)

guards indicate when an edge may be taken, 



Timed Automata
Invariants

n

m

a
X:=0

X<=5 AND Y>3

x<=5

y<=10

Location
invariants

(n, x = 2.4, y = 3.31) (n, x = 3.5, y = 4.41)e(1.1)

(n, x = 2.4, y = 3.31) e(3.2)

an invariant is a clock constraint 
that specifies the amount of time that

may be spent in a location

(location) invariants are
used to force an edge to be taken



Example from R. Alur: Composition of T.A

Interpretation : the train is far in the state s0, it sends ‘ approach ’, 
the clock x is reset to 0 , it goes in the state s1, it is near the crossing.
The invariant x<=5 defines the life-time of the state s1.
At least 2 t.u after ‘ approach ’, the train sends  ’in ’ and goes in s2. It 
remains in s2 no more than 3 t.u, ……….. 

The specification is not deterministic



The T.A is not deterministic

approach lower out

time

x > 2 ∧∧∧∧  x <= 5
z <= 1

“out” must occurs after “lower” because x and z are reset 
during the discrete transitions with “approach”

Temporal constraint 
between “approach” and “out”



X is not the life-time of the state s2
σ  = σ  = σ  = σ  = x - (elapsed time in s1)
because x was reset to 0 during 
the discrete transition (s0,s1)

Remark:



To obtain the same 
specification in DEVS,
we must add a state 

variable which memorizes 
the elapsed time in s1 
and which is used to 

define the life-time of s2

The timed constraint between the actions ’approach’ and 
‘out’ is expressed more easily with the T.A



Timed automata are oriented 
towards the definition of 

timed constraints (using clocks)
between events

They are  not simulation models
But they can be used as 
high level specifications 

of 
a simulation models



CLOCKS 
The clocks { c1,c2,…cj,….cn } of a timed automaton 
are state variables  in the corresponding DEVS model

with : 
cj = f ( e, cj )  

(e elasped time in the state)

INVARIANT
The invariant of a state sj of a T.A directly linked with
the life time of the discrete state in the DEVS world

GUARDS
A guard allow to define the next discrete state taking
into account the elapsed time in the present state

T.A and DEVS



DEVS formalism is not framed within the dichotomy 
between syntax and semantics. 

DEVS is not a syntactic formalism 
with a corresponding semantic model, 

it is a symbolic specification of 
system semantics [O’Neill]. 

From DEVS to Timed Automata
 Syntax and Semantics



Definition:
A syntactic untimed DEVS model is a structure :

A = (Q; E; ΣΣΣΣ; src; act; trg; q0 ),

Where :
- Q is a finite set of explicit discrete states (limitation)
- E a finite set of transitions,
− Σ− Σ− Σ− Σ a set of actions (events), 
src : E ! Q, associates a source to a transition 
act : E ! ΣΣΣΣ associates an action (event) to a transition 
trg : E ! Q associate a target to a transition 
q0 is the initial state.

Untimed automaton and Syntactic Untimed DEVS Model



We have the following relationships :
S = Q,
Σ = Σ = Σ = Σ = X∪∪∪∪ Y 
∃∃∃∃  ei ∈∈∈∈  E if  ∃  a pair (si, sj) such as 

-∃  (si, e) and ∃  xk such as δ ext( si, e, xk) = sj ,
- OR ∃  (si, e)  such as δ int( si) = sj

Then : src (ei) = si, 
trg(ei) = sj

and
- act(ei) = xk if δ ext( si, e, xk) = sj
this kind of edges corresponds to an external event
- act(ei) = yk if δ ext(si) = sj with λ(si) = yk
this kind of edges corresponds to an internal event

M = < X, S, Y, M = < X, S, Y, δδδδδδδδ int int ,  , δδδδδδδδ ext ext ,  , λλλλλλλλ  , D> , D>.



Untimed Syntactic DEVS 

S1

S3

S2Xj

yj

e1
e2

edge e1 --> external transition, 
edge e2 -->  internal transition. 

S1
σ S3

S2Xj

/yj

DEVS

Active state

δext

δint



In the DEVS world,
The edge e1 corresponds to an external transition, 

e2 to an internal transition. 

At the syntactic level, 
nothing is said on how to do 
the simulation of  the model 

Operational Semantics rules must be 
added to allow simulation

S1

S3

S2Xj (input event)

yj (ouput event)

e1
e2



Timing Annotation for syntactic DEVS

Before introducing Operational Semantics rules , 
we define the timing annotation of 

a syntactic DEVS in order
to represent time



Definition :
A timing annotation for an untimed DEVS is structure :

T = (C; Inv; G; A; v0),

where
-  C is a clock.
-  Inv : associates the invariant c <=  D(si) for each si ∈  S,
-  G : E !  F(C) associates the guard c= D(si) for an internal 
transition, and the guard c<D(si) for an external  transition.
-  A : E ! M(C) associates the assignment c := 0 to each 
transition. 
-  c := 0  is the initial valuation of the clock 

Timing Annotation for syntactic
 DEVS



A syntactic untimed DEVS with a 
timing annotation is 

an syntactic atomic DEVS model

Definition of an Operational Semantics 
for syntactic DEVS 

with Timing annotation

SIMULATION =
definition of an

operational semantics



the operational semantics of a DEVS model can be defined 
in terms of a transition system (SQ, s0, !) where :

-SQ is a set of total states, i.e. (s; e), where:
 s ∈  S is a discrete state , 
 e ∈  invar(e) is a valuation of  the clock c satisfying 

the invariant of s. 

-s0 is the initial state (if it exists), 

- ! is the transition relation that defines how to evolve 
from one state to another. 

Operational Semantics of syntactic DEVS 
with Timing annotation



! is the transition relation, two possible ways in
which the model can proceed :

-Discrete transition by traversing an edge 
(discrete change),

-Time transition by letting time progress 
while staying in the same discrete state sk 
as long as the clock c satisfies the invariant 
of sk. 

Operational Semantics of syntactic DEVS 
with Timing annotation



A syntactic untimed DEVS with a 
timing annotation  and its operational semantics 

is 
a classical atomic DEVS model

It is also a 
deterministic 

Timed Automaton



tank

Barrel

conveyor

valve

This filling system has two inputs:
-control of the valve:  val = {open, close}
-control of the conveyor: mot ={start, stop}

and two sensor outputs:
-barrel level Bl ={full},
-barrel position Bp = {good}

Example of transformation: DEVS to T.A - filling system



Model of 
the control

system

Model of 
the filling
system

VAL

MOT

BL

BP

-control of the valve:  VAL = {open, close}
-control of the conveyor: MOT ={start, stop}
-barrel level: BL ={full},
-barrel position: BP = {good}



Init
Mot=start

AdCon0
/Bp = good

Mot = stop

Val = open
StopConFilling0

/Bl = full
Filling1

Val = close

AdCon1

Init

/ Mot=start
AdCon0

Bp = good

/Mot = stop

/Val = open
StopConFilling0

Bl = full
Filling1

/Val = close

AdCon1

Control System

Filling System

Active State

DEVS Models



Each active or passive state of the DEVS model
corresponds a location ( discrete state ) in the T.A

Each internal or external transition of the DEVS
model corresponds to an edge in the T.A

Life-times of active states are used to define the
invariants and  the guards in the T.A

Filling System: From DEVS to T.A



Init

Mot=start
AdCon0

σσσσ1

/Bp = good

Mot = stop

Val = open
StopConFilling0

σσσσ2/Bl = full
Filling1

Val = close

AdCon1

DEVS model

Init Mot=start
AdCon0

Bp = good

Mot = stop

Val = open
StopConFilling0

Bl = full
Filling1

Val = close

C<=σσσσ1

C<=σσσσ2

AdCon1

e1
c: =0

C = σσσσ1
c: =0

e3
c: =0

e4
c: =0

c= σσσσ2
c: =0
e5

e6
c: =0 Timed Automaton

( which is deterministic)

Filling System
under control

 



Untimed syntactic DEVS
+

Timing annotation 
+

operational semantics 
= 

Atomic DEVS = Timed Automaton



Design Process of a Control System

Three steps:
- specification,
- design of an implementation,
- verification that the implementation satisfies 
the specification

( with feedback loops)



Design Process of a Control System
Model Verification

Aim : built the model of the control system and verify it
and the coupled model

Model of 
the control

system

Model of 
the filling
system

VAL

MOT

BL

BP



System software

system
model

control
model

Real World

Model World

Analysis

Design

specification

Design Process of a Control System

Specification + Verification



System software

DEVS
model

T.A
model

Real World

Model World

Analysis
Design

specification

Models in a Design Process of a Control System



Design Process of a Control System
Model Verification

Proposition of 3 possible verification approaches

1 - in the T.A world 
by model checking and/or proof of properties

2 - in the DEVS world
based on simulation

3 - in the T.A world,
‘simulation proof’



DEVS
model

T.A
model

Verification based on Simulation

DEVS
model

DEVS
model

transformation

Coupled DEVS model

Initial model

Verification



DEVS
model

T.A
model

Formal Verification

T.A
model

T.A
model

transformation

Automata composition

Initial model

Verification



DEVS model of 
the system 
to be control

Formal Verification

Transformation

Deterministic
Timed 

Automaton

T.A
control system

Composition
of T.A

Formal Verification
model checking

proof of properties

T.A world



Verification

T.A of the
control system Transformation

DEVS
model

DEVS model
of the system 

to be controlled

Coupled DEVS
Model

Verification
based on simulation

DEVS world



Refinement
DEVS model

of the 
Implementation

Specification
T.A

control system

Formal Verification

simulation proof 
or 

DEVS simulation

Other possibility for the design approach



 1 - built the min-max DEVS model of the system to
be control,

2- built the T.A representing the H-L specification
of the control,

3- built the DEVS model of the control implementation,

4- prove that any behavior that can be exhibited
by the DEVS model can also be exhibited by the
High-level specification.

Example of a design Methodology based on Simulation proof



Complete Behavioral Model of the Filling System

Init
e0 :=0

Mot=start
AdCon0

TL = 30-e0

/Bp = good

Mot = stop

Val = open

StopCon

Filling0
TL =20/Bl = full

Filling1
TL = 3

OVERFill

Val = close

Mot=start

Val = close

e0:=e

error

In this model, we do not make the hypothesis that the 
control events occur at the good times.



In this model, with precise values for the life-times 
(time advance) of the states, we have done 

the hypothesis that, for example, the 
time interval between the events Mot= start and Bp = good

has always the same value.
 

It is obvious that this hypothesis is not realistic

Min-Max DEVS [giam2000]



 built the min-max DEVS model of the system to 
be control,

why
The life-time of transient states can 

not be known with accuracy

Init
Mot=start AdCon0

σσσσ1
/Bp = good

The life-time of AdCon0, σ1, depends on:
 - the speed of the conveyor,

- the length between the barrels.

Init
Mot=start

AdCon0
σσσσmin,
σσσσmax /Bp = good



/Bp = good

Init
Mot=start

AdCon0
Tm = 30,
TM = 40 Mot = stop

Val = open

StopCon

Filling0
Tm = 20,
TM = 25

/Bl = full
Filling1
Tm = 3
TM = 5

OVERFill

Val = close

Mot=start

Val = close

Behavioral Model of the Filling System
with min-max life-times

/error



 1 - built the min-max DEVS model of the system to
be control,

2- built the T.A representing the H-L specification
of the control,

3- built the DEVS model of the control implementation,

4- prove that any behavior that can be exhibited
by the DEVS model can also be exhibited by the
High-level specification.

Example of a Methodology based on Simulation proof



/Bp = good

Using the min-max DEVS model we can built the T.A 
representing the H-L specification of the control system

Looking at the min-max model of the system and 
at the requirements for the control, we can built

 the specification of its control by a T.A expressing the 
timing constraints between events

Init

Mot=start
AdCon0
Tm = 30,
TM = 40

Between (Mot=start) and (Bp=good), there is at 
least 30 t.u  and at most 40 t.u



We obtain the following T.A for the high level 
specification of the control system

Init

Mot=start
AdCon0
c<40

Bp = good AdCon1
c < 5

C:= 0

30<= C <= 40

C:= 0

Mot = stop

StopCon

C:= 03<= C <= 5This invariant specifies that:
 The control must send out

‘Mot = stop’ at most
5 t.u after “Bp = good”

This guard specifies that: The control must not send out
‘Mot = stop’ before  3 t.u after “Bp = good”



Init

Mot=start
AdCon0
c=<40

Bp = good AdCon1
c < 5

C:= 0

30<= C < 40

C:= 0

Mot = stop

StopCon

C:= 03<= C <= 5Error

C >= 40Error

Knowing the min-max behavior of the system
we can add control states to detect erroneous behaviors 

of the controlled system

error message if the elapsed time between
“Mot = Start” and “Bp = good”

 is greatest or equal than 40 t.u 



The model is not time-deterministic and can not be simulate, but it
expresses time constraints for the control system

Remark

Init

Mot=start
AdCon0
c=<40

Bp = good AdCon1
c < 5

C:= 0

30<= C < 40

C:= 0

Mot = stop

StopCon

C:= 03<= C <= 5Error

C >= 40Error

The occurrence time of ‘mot=stop” is 
in the time interval [3 ,5]



1 - built the min-max DEVS model of the system to
be control,

2- built the T.A representing the H-L specification
of the control,

3- built the DEVS model of the control implementation,

4- prove that any behavior that can be exhibited
by the DEVS model can also be exhibited by the
High-level specification.

Example of a Methodology based on Simulation proof



Init
Mot=start AdCon0

c<40
Bp = good AdCon1

c < 5

C:= 0

30<= C < 40

C:= 0

Mot = stop

StopCon

C:= 03<= C <= 5Error
C >= 40

Error

Init
/Mot=start AdCon0

σσσσ = 40
Bp = good AdCon1

σσσσ = 4

/Mot = stop

StopCon

Error

Error

From the high level specification, we can built the DEVS 
model of a possible implementation of the control system.  

T.A

DEVS



 1 - built the min-max DEVS model of the system to
be control,

2- built the T.A representing the H-L specification
of the control,

3- built the DEVS model of the control implementation,

4- prove that any behavior that can be exhibited
by the DEVS model can also be exhibited by the
High-level specification.

Example of a Methodology based on Simulation proof



Using a DEVS simulator,  we can show that exists 
a simulation relationship between the high-level 
specification by the T.A and the DEVS model of the 
control part

To establish this simulation proof 
we must simulate all the possible input sequences 

of the DEVS model

But, It is also possible to simulate only 
typical scenarios



Other approach: Composition of T.A

The DEVS model of the filling system is transformed
into a T.A. The control system is specified by a T.A

Using a tool as UPPAAL, we can verify some properties
of the automaton built by the composition of the 2 T.A



Using UPPAAL for formal verification
1st approach Composition of T.A

T.A for the control of the filling system



T.A of the filling system obtained from the DEVS model 



a DEVS model is deterministic, a TA not necessarily,

a TA has a finite number of discrete states, a DEVS not 
necessarily

Transformation of 
an  DEVS into a T.A

implies to only consider
DEVS with a finite number 

of discrete states 

Transformation of 
a T.A into a DEVS

implies to only consider 
deterministic T.A 

Conclusion and some ways to explore



Conclusion and some ways to explore

Min-max DEVS seems more close to T.A than classical 
DEVS  

definition

Formal Transformation method for min-max DEVS into T.A
and 

Formal verification methods from T.A world to
 min-max DEVS



Develop works on transformation of DEVS into TA,
and T.A into DEVS

Propose design methodologies with formal verification
based on DEVS simulation

Diffusion in Academic environments

Conclusion and some ways to explore



Diffusion in Industrial environments

Do not forget the need of simple and 
domain-oriented 

languages to bring users in the DEVS world

Domain-oriented description languages for DEVS models
Description languages independent of 

problem-solving tools which can be 
used on the description

Bank of
models

Bank of
Tools

Test pattern generator,
model checking tools

simulators,….

User
description

language



CONCLUSION OF THE CONCLUSION

Real 
System Model

Solution
Real world 

solution

Model WorldReal World

Problem solving 
method

modeling

Interpretation

application

Clean operational semantics

Clean Interpretation


