
DEVS, TIMED AUTOMATA
and

FORMAL VERIFICATIONS

Norbert Giambiasi
norbert.giambiasi@univ.u-3mrs.fr

LSIS : Laboratoire des Sciences
de l’Information et des Systèmes

UMR 6168

The aim of this presentation is not to give
detailed results on the

transformation of DEVS models into
Timed Automata.

It has rather for object to open research
ways which could introduce the DEVS

formalism into real-time system design

It is proposed to make diffusion in Academic environments,
to impose the standard in the academia as a way of
achieving diffusion.

DEVS Standardization Study group.

Minutes of the first meeting.
April 26th. 2001 (ASTC; Seattle, WA).

Prof. Kim

Decide which is the goal of the std. to be proposed:
interoperation? Systems analysis?

Defining a goal is the first step to be carried out.

 Or Modeling during a Design process.

DEVS Standardization group

Meetings in: European Simulation Symposium
(October 2001, Marseille, France)

DEVS can be used as the core formalism,
in order to enable proof of correctness.

DEVS Standardization group

Meeting in Wintersim (December 2001, Arlington, VA)

DEVS can be used as the
core formalism, in order to
enable proof of correctness.

Decide which is the goal
of the std. to be proposed:

interoperation?
Systems analysis?

Defining a goal is the first
step to be carried out.

It is proposed to make diffusion
in Academic environments,
to impose the standard in
the academia as a way of

achieving diffusion.

Design approaches
for real-time

 systems

This Presentation

Links between DEVS
and Timed Automata

Links between DEVS
and Timed Automata

Behind this presentation and the transformation
of DEVS models into timed automata, we try to
answer to the questions:

Why, in the field of software engineering, people
use timed automata (Petri nets) rather than
DEVS ?

How (and where) to introduce the use of DEVS
formalism into software engineering approaches ?

DEVS or TIMED AUTOMATA

DEVS formalism is not framed within the dichotomy
between syntax and semantics.

DEVS is not a syntactic formalism
with a corresponding semantic model,
it is a symbolic specification of

system semantics [O’Neill].

 A first answer can be :

Why, in the field of software engineering and
computer sciences, academic people

use timed automata (or Petri nets or Statecharts)
 rather than DEVS ?

syntax

Operationnal
semantics

statecharts

Timed Automata
and

Petri nets

DEVS

Explicit states Logical time

continuous
time

DEVS = clean operational semantics
and clean interpretation

- Only one way to execute the model,

- A clean interpretation of the model elements
 in the real-world

Are these 2 properties considered as needed
for high-level specification formalisms by software

engineering community ?

Classical academic approaches are based on
formal verification and not on simulation,

Some other answers can be :

DEVS models are deterministic and
this can be considered as an inconvenience

for high level specifications of
real-time software

Why, in the field of software engineering and
computer sciences, academic people

use timed automata (or Petri nets or Statecharts)
 rather than DEVS ?

DEVS well-adapted
to low-level models

Analysis models of
real systems

Timed Autmata
 well-adapted

to high-level models

Software
specifications

Why to establish a link
between DEVS

and
Timed Automata

To allow
formal verification

methods to be used
in the

DEVS world

To allow
clean and successful
 simulation methods

to be used
in the Timed Automata

world

Why to establish a link
between DEVS and Timed Automata

Timed automata can
be seen as a high level
specification formalism

DEVS model can be seen
 as a low level specification
of the system

Prove that the DEVS model
implements correctly the
specification given by the

Timed automaton

Design Methodology

Why to establish a link
between DEVS and Timed Automata

Timed automata used
 as a high level
specification

for control systems

DEVS used to represent
the systems to be

controlled

Verify the behavior of the coupled model

Design Methodology

TIMED AUTOMATON

T.A introduced in the 90 for high level
formal specifications
 of real-time systems

A variety of formal methods have been
developed to prove that a T.A. satisfies basic

correctness properties
and timing properties

which guarantee the performance
of the real systems.

Model checking was one of the most successful
verification technique.

An analysis is done to explore the reachable state space.
Tools are typically unable to analyze models with a large
number of states

The notions of safety and liveness properties have
been introduced to express that:

-‘something (bad) will not happen during
an execution: safety property,
-eventually ‘something (good) will happen
during an execution: liveness property

Some works in verification of real-time systems
 are based on the use of something called ‘simulation’

A simulation proof involves establishing a correspondence
between the states of two models M1 and M2, one of
these models is regarded as an implementation and
the other as a specification.
The correspondence between these two models is called
a simulation relationship.
The existence of a simulation relationship is used to show
that any behavior that can be exhibited by M1 can also
be exhibited by M2
Typically, the model M1 contains more details than the
specification M2.

Simulation Relationship

Classical timed automata (TA) are, non-deterministic
finite discrete state automata extended with a finite
number of real-valued clocks.

A TA alternates between two modes of execution,
letting time pass continuously, then taking a step
changing its discrete state.

A classical timed automaton is seen as a generator
(or an acceptor), it has only output (input) actions
or events associated with state transitions.

TIMED AUTOMATA

The states of the automaton are called vertices (location)
 and the transitions (arcs, edges) are called switches.

Switches (edges) are instantaneous.

Time can elapse in locations.

A clock can be reset to zero simultaneously with any switch.

The reading of a clock equals the time elapsed since the last
time it was reset (time is global)

Recall: TIMED AUTOMATA
basic definitions from the literature

With each switch one may associate a clock constraint, and
require that the switch may occur only if the current values of

the clocks satisfy this constraint.

With each location we associate a clock constraint called its
invariant,

and require that time can elapse in a location only as
long as its invariant stays true.

S0
S1

x<=2

A, x:=0

x>=1, B

TIMED AUTOMATA

Timed Automata

X<=5 AND Y>3

n

m

a
X:=0

Reset
Action performed on clocks

GUARD
Boolean combination of comparisons with
integer bounds

Action
used for synchronization

A STATE of the Automaton is defined by:
(location, X, Y)

called total state in the DEVS formalism

Timed Automata

n

m

a
X:=0

X<=5 AND Y>3

Transitions

Transition due to a location switch (discrete):

(n, x = 2.4, y = 3.31) a (m, x = 0, y = 3.31)

Transition due to time elapse (continuous):

(n, x = 2.4, y = 3.31) (n, x = 3.5, y = 4.41)e(1.1)

guards indicate when an edge may be taken,

Timed Automata
Invariants

n

m

a
X:=0

X<=5 AND Y>3

x<=5

y<=10

Location
invariants

(n, x = 2.4, y = 3.31) (n, x = 3.5, y = 4.41)e(1.1)

(n, x = 2.4, y = 3.31) e(3.2)

an invariant is a clock constraint
that specifies the amount of time that

may be spent in a location

(location) invariants are
used to force an edge to be taken

Example from R. Alur: Composition of T.A

Interpretation : the train is far in the state s0, it sends ‘ approach ’,
the clock x is reset to 0 , it goes in the state s1, it is near the crossing.
The invariant x<=5 defines the life-time of the state s1.
At least 2 t.u after ‘ approach ’, the train sends ’in ’ and goes in s2. It
remains in s2 no more than 3 t.u, ………..

The specification is not deterministic

The T.A is not deterministic

approach lower out

time

x > 2 ∧∧∧∧ x <= 5
z <= 1

“out” must occurs after “lower” because x and z are reset
during the discrete transitions with “approach”

Temporal constraint
between “approach” and “out”

X is not the life-time of the state s2
σ = σ = σ = σ = x - (elapsed time in s1)
because x was reset to 0 during
the discrete transition (s0,s1)

Remark:

To obtain the same
specification in DEVS,
we must add a state

variable which memorizes
the elapsed time in s1
and which is used to

define the life-time of s2

The timed constraint between the actions ’approach’ and
‘out’ is expressed more easily with the T.A

Timed automata are oriented
towards the definition of

timed constraints (using clocks)
between events

They are not simulation models
But they can be used as
high level specifications

of
a simulation models

CLOCKS
The clocks { c1,c2,…cj,….cn } of a timed automaton
are state variables in the corresponding DEVS model

with :
cj = f (e, cj)

(e elasped time in the state)

INVARIANT
The invariant of a state sj of a T.A directly linked with
the life time of the discrete state in the DEVS world

GUARDS
A guard allow to define the next discrete state taking
into account the elapsed time in the present state

T.A and DEVS

DEVS formalism is not framed within the dichotomy
between syntax and semantics.

DEVS is not a syntactic formalism
with a corresponding semantic model,

it is a symbolic specification of
system semantics [O’Neill].

From DEVS to Timed Automata
 Syntax and Semantics

Definition:
A syntactic untimed DEVS model is a structure :

A = (Q; E; ΣΣΣΣ; src; act; trg; q0),

Where :
- Q is a finite set of explicit discrete states (limitation)
- E a finite set of transitions,
− Σ− Σ− Σ− Σ a set of actions (events),
src : E ! Q, associates a source to a transition
act : E ! ΣΣΣΣ associates an action (event) to a transition
trg : E ! Q associate a target to a transition
q0 is the initial state.

Untimed automaton and Syntactic Untimed DEVS Model

We have the following relationships :
S = Q,
Σ = Σ = Σ = Σ = X∪∪∪∪ Y
∃∃∃∃ ei ∈∈∈∈ E if ∃ a pair (si, sj) such as

-∃ (si, e) and ∃ xk such as δ ext(si, e, xk) = sj ,
- OR ∃ (si, e) such as δ int(si) = sj

Then : src (ei) = si,
trg(ei) = sj

and
- act(ei) = xk if δ ext(si, e, xk) = sj
this kind of edges corresponds to an external event
- act(ei) = yk if δ ext(si) = sj with λ(si) = yk
this kind of edges corresponds to an internal event

M = < X, S, Y, M = < X, S, Y, δδδδδδδδ int int , , δδδδδδδδ ext ext , , λλλλλλλλ , D> , D>.

Untimed Syntactic DEVS

S1

S3

S2Xj

yj

e1
e2

edge e1 --> external transition,
edge e2 --> internal transition.

S1
σ S3

S2Xj

/yj

DEVS

Active state

δext

δint

In the DEVS world,
The edge e1 corresponds to an external transition,

e2 to an internal transition.

At the syntactic level,
nothing is said on how to do
the simulation of the model

Operational Semantics rules must be
added to allow simulation

S1

S3

S2Xj (input event)

yj (ouput event)

e1
e2

Timing Annotation for syntactic DEVS

Before introducing Operational Semantics rules ,
we define the timing annotation of

a syntactic DEVS in order
to represent time

Definition :
A timing annotation for an untimed DEVS is structure :

T = (C; Inv; G; A; v0),

where
- C is a clock.
- Inv : associates the invariant c <= D(si) for each si ∈ S,
- G : E ! F(C) associates the guard c= D(si) for an internal
transition, and the guard c<D(si) for an external transition.
- A : E ! M(C) associates the assignment c := 0 to each
transition.
- c := 0 is the initial valuation of the clock

Timing Annotation for syntactic
 DEVS

A syntactic untimed DEVS with a
timing annotation is

an syntactic atomic DEVS model

Definition of an Operational Semantics
for syntactic DEVS

with Timing annotation

SIMULATION =
definition of an

operational semantics

the operational semantics of a DEVS model can be defined
in terms of a transition system (SQ, s0, !) where :

-SQ is a set of total states, i.e. (s; e), where:
 s ∈ S is a discrete state ,
 e ∈ invar(e) is a valuation of the clock c satisfying

the invariant of s.

-s0 is the initial state (if it exists),

- ! is the transition relation that defines how to evolve
from one state to another.

Operational Semantics of syntactic DEVS
with Timing annotation

! is the transition relation, two possible ways in
which the model can proceed :

-Discrete transition by traversing an edge
(discrete change),

-Time transition by letting time progress
while staying in the same discrete state sk
as long as the clock c satisfies the invariant
of sk.

Operational Semantics of syntactic DEVS
with Timing annotation

A syntactic untimed DEVS with a
timing annotation and its operational semantics

is
a classical atomic DEVS model

It is also a
deterministic

Timed Automaton

tank

Barrel

conveyor

valve

This filling system has two inputs:
-control of the valve: val = {open, close}
-control of the conveyor: mot ={start, stop}

and two sensor outputs:
-barrel level Bl ={full},
-barrel position Bp = {good}

Example of transformation: DEVS to T.A - filling system

Model of
the control

system

Model of
the filling
system

VAL

MOT

BL

BP

-control of the valve: VAL = {open, close}
-control of the conveyor: MOT ={start, stop}
-barrel level: BL ={full},
-barrel position: BP = {good}

Init
Mot=start

AdCon0
/Bp = good

Mot = stop

Val = open
StopConFilling0

/Bl = full
Filling1

Val = close

AdCon1

Init

/ Mot=start
AdCon0

Bp = good

/Mot = stop

/Val = open
StopConFilling0

Bl = full
Filling1

/Val = close

AdCon1

Control System

Filling System

Active State

DEVS Models

Each active or passive state of the DEVS model
corresponds a location (discrete state) in the T.A

Each internal or external transition of the DEVS
model corresponds to an edge in the T.A

Life-times of active states are used to define the
invariants and the guards in the T.A

Filling System: From DEVS to T.A

Init

Mot=start
AdCon0

σσσσ1

/Bp = good

Mot = stop

Val = open
StopConFilling0

σσσσ2/Bl = full
Filling1

Val = close

AdCon1

DEVS model

Init Mot=start
AdCon0

Bp = good

Mot = stop

Val = open
StopConFilling0

Bl = full
Filling1

Val = close

C<=σσσσ1

C<=σσσσ2

AdCon1

e1
c: =0

C = σσσσ1
c: =0

e3
c: =0

e4
c: =0

c= σσσσ2
c: =0
e5

e6
c: =0 Timed Automaton

(which is deterministic)

Filling System
under control

Untimed syntactic DEVS
+

Timing annotation
+

operational semantics
=

Atomic DEVS = Timed Automaton

Design Process of a Control System

Three steps:
- specification,
- design of an implementation,
- verification that the implementation satisfies
the specification

(with feedback loops)

Design Process of a Control System
Model Verification

Aim : built the model of the control system and verify it
and the coupled model

Model of
the control

system

Model of
the filling
system

VAL

MOT

BL

BP

System software

system
model

control
model

Real World

Model World

Analysis

Design

specification

Design Process of a Control System

Specification + Verification

System software

DEVS
model

T.A
model

Real World

Model World

Analysis
Design

specification

Models in a Design Process of a Control System

Design Process of a Control System
Model Verification

Proposition of 3 possible verification approaches

1 - in the T.A world
by model checking and/or proof of properties

2 - in the DEVS world
based on simulation

3 - in the T.A world,
‘simulation proof’

DEVS
model

T.A
model

Verification based on Simulation

DEVS
model

DEVS
model

transformation

Coupled DEVS model

Initial model

Verification

DEVS
model

T.A
model

Formal Verification

T.A
model

T.A
model

transformation

Automata composition

Initial model

Verification

DEVS model of
the system
to be control

Formal Verification

Transformation

Deterministic
Timed

Automaton

T.A
control system

Composition
of T.A

Formal Verification
model checking

proof of properties

T.A world

Verification

T.A of the
control system Transformation

DEVS
model

DEVS model
of the system

to be controlled

Coupled DEVS
Model

Verification
based on simulation

DEVS world

Refinement
DEVS model

of the
Implementation

Specification
T.A

control system

Formal Verification

simulation proof
or

DEVS simulation

Other possibility for the design approach

 1 - built the min-max DEVS model of the system to
be control,

2- built the T.A representing the H-L specification
of the control,

3- built the DEVS model of the control implementation,

4- prove that any behavior that can be exhibited
by the DEVS model can also be exhibited by the
High-level specification.

Example of a design Methodology based on Simulation proof

Complete Behavioral Model of the Filling System

Init
e0 :=0

Mot=start
AdCon0

TL = 30-e0

/Bp = good

Mot = stop

Val = open

StopCon

Filling0
TL =20/Bl = full

Filling1
TL = 3

OVERFill

Val = close

Mot=start

Val = close

e0:=e

error

In this model, we do not make the hypothesis that the
control events occur at the good times.

In this model, with precise values for the life-times
(time advance) of the states, we have done

the hypothesis that, for example, the
time interval between the events Mot= start and Bp = good

has always the same value.

It is obvious that this hypothesis is not realistic

Min-Max DEVS [giam2000]

 built the min-max DEVS model of the system to
be control,

why
The life-time of transient states can

not be known with accuracy

Init
Mot=start AdCon0

σσσσ1
/Bp = good

The life-time of AdCon0, σ1, depends on:
 - the speed of the conveyor,

- the length between the barrels.

Init
Mot=start

AdCon0
σσσσmin,
σσσσmax /Bp = good

/Bp = good

Init
Mot=start

AdCon0
Tm = 30,
TM = 40 Mot = stop

Val = open

StopCon

Filling0
Tm = 20,
TM = 25

/Bl = full
Filling1
Tm = 3
TM = 5

OVERFill

Val = close

Mot=start

Val = close

Behavioral Model of the Filling System
with min-max life-times

/error

 1 - built the min-max DEVS model of the system to
be control,

2- built the T.A representing the H-L specification
of the control,

3- built the DEVS model of the control implementation,

4- prove that any behavior that can be exhibited
by the DEVS model can also be exhibited by the
High-level specification.

Example of a Methodology based on Simulation proof

/Bp = good

Using the min-max DEVS model we can built the T.A
representing the H-L specification of the control system

Looking at the min-max model of the system and
at the requirements for the control, we can built

 the specification of its control by a T.A expressing the
timing constraints between events

Init

Mot=start
AdCon0
Tm = 30,
TM = 40

Between (Mot=start) and (Bp=good), there is at
least 30 t.u and at most 40 t.u

We obtain the following T.A for the high level
specification of the control system

Init

Mot=start
AdCon0
c<40

Bp = good AdCon1
c < 5

C:= 0

30<= C <= 40

C:= 0

Mot = stop

StopCon

C:= 03<= C <= 5This invariant specifies that:
 The control must send out

‘Mot = stop’ at most
5 t.u after “Bp = good”

This guard specifies that: The control must not send out
‘Mot = stop’ before 3 t.u after “Bp = good”

Init

Mot=start
AdCon0
c=<40

Bp = good AdCon1
c < 5

C:= 0

30<= C < 40

C:= 0

Mot = stop

StopCon

C:= 03<= C <= 5Error

C >= 40Error

Knowing the min-max behavior of the system
we can add control states to detect erroneous behaviors

of the controlled system

error message if the elapsed time between
“Mot = Start” and “Bp = good”

 is greatest or equal than 40 t.u

The model is not time-deterministic and can not be simulate, but it
expresses time constraints for the control system

Remark

Init

Mot=start
AdCon0
c=<40

Bp = good AdCon1
c < 5

C:= 0

30<= C < 40

C:= 0

Mot = stop

StopCon

C:= 03<= C <= 5Error

C >= 40Error

The occurrence time of ‘mot=stop” is
in the time interval [3 ,5]

1 - built the min-max DEVS model of the system to
be control,

2- built the T.A representing the H-L specification
of the control,

3- built the DEVS model of the control implementation,

4- prove that any behavior that can be exhibited
by the DEVS model can also be exhibited by the
High-level specification.

Example of a Methodology based on Simulation proof

Init
Mot=start AdCon0

c<40
Bp = good AdCon1

c < 5

C:= 0

30<= C < 40

C:= 0

Mot = stop

StopCon

C:= 03<= C <= 5Error
C >= 40

Error

Init
/Mot=start AdCon0

σσσσ = 40
Bp = good AdCon1

σσσσ = 4

/Mot = stop

StopCon

Error

Error

From the high level specification, we can built the DEVS
model of a possible implementation of the control system.

T.A

DEVS

 1 - built the min-max DEVS model of the system to
be control,

2- built the T.A representing the H-L specification
of the control,

3- built the DEVS model of the control implementation,

4- prove that any behavior that can be exhibited
by the DEVS model can also be exhibited by the
High-level specification.

Example of a Methodology based on Simulation proof

Using a DEVS simulator, we can show that exists
a simulation relationship between the high-level
specification by the T.A and the DEVS model of the
control part

To establish this simulation proof
we must simulate all the possible input sequences

of the DEVS model

But, It is also possible to simulate only
typical scenarios

Other approach: Composition of T.A

The DEVS model of the filling system is transformed
into a T.A. The control system is specified by a T.A

Using a tool as UPPAAL, we can verify some properties
of the automaton built by the composition of the 2 T.A

Using UPPAAL for formal verification
1st approach Composition of T.A

T.A for the control of the filling system

T.A of the filling system obtained from the DEVS model

a DEVS model is deterministic, a TA not necessarily,

a TA has a finite number of discrete states, a DEVS not
necessarily

Transformation of
an DEVS into a T.A

implies to only consider
DEVS with a finite number

of discrete states

Transformation of
a T.A into a DEVS

implies to only consider
deterministic T.A

Conclusion and some ways to explore

Conclusion and some ways to explore

Min-max DEVS seems more close to T.A than classical
DEVS

definition

Formal Transformation method for min-max DEVS into T.A
and

Formal verification methods from T.A world to
 min-max DEVS

Develop works on transformation of DEVS into TA,
and T.A into DEVS

Propose design methodologies with formal verification
based on DEVS simulation

Diffusion in Academic environments

Conclusion and some ways to explore

Diffusion in Industrial environments

Do not forget the need of simple and
domain-oriented

languages to bring users in the DEVS world

Domain-oriented description languages for DEVS models
Description languages independent of

problem-solving tools which can be
used on the description

Bank of
models

Bank of
Tools

Test pattern generator,
model checking tools

simulators,….

User
description

language

CONCLUSION OF THE CONCLUSION

Real
System Model

Solution
Real world

solution

Model WorldReal World

Problem solving
method

modeling

Interpretation

application

Clean operational semantics

Clean Interpretation

